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ALGEBRAIC NUMBERS CLOSE TO BOTH 0 AND 1 

D. ZAGIER 

Dedicated to the memory of D. H. Lehmer 

ABSTRACT. A recent theorem of Zhang asserts that 

H(a) + H(I - a) > C 

for all algebraic numbers a =& 0, 1, (1 ? X-3)/2, and some constant C > 0. 
An elementary proof of this, with a sharp value for the constant, is given (the 
optimal value of C is I log( I (1 + V3)) = 0, 2406.. , attained for eight values 
of a) and generalizations to other curves are discussed. 

1. LEHMER'S CONJECTURE AND ZHANG'S THEOREM 

The Mahler measure of an irreducible polynomial 

n 

(1) f(x) = aoxn +axnl n+ * * + an= ao l(x - aj) (a, E , gcd{a, } = 1) 
j=1 

is defined as 

(2) M(f) = laol fI lajl 
laj I> 

Clearly, M(f) > 1, with equality if and only if f(x) is ?x or a cyclotomic 
polynomial, by Kronecker's theorem. In a famous article of 1933, Lehmer [4] 
asked whether in all other cases M(f) is bounded away from 1, and specifically 
whether M(f) > a0, where ao = 1.1762808... is the larger real root of the 
10th-degree polynomial x10 + x9 -X - X6 - X- - x3 + x + 1. 

Lehmer's conjecture is still open today, though some progress has been made, 
both in getting lower estimates for M(f) which are not too close to 1 for n 
large (cf. [1]) and in finding other particular polynomials with low Mahler mea- 
sures [2]. The special number ao discovered by Lehmer has turned out to have 
other interesting properties. In particular, there are at least 71 multiplicatively 
independent multiplicative relations among the numbers 1 - an ( n E N), and 
there are so-called "ladder relations" among the values of polylogarithm func- 
tions at arguments an up to polylogarithms of at least the 16th order, both very 
possibly absolute records among all algebraic integers [3]. 
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From a modern point of view, the Mahler measure is a version of the height. 
If K is an algebraic number field, then the (logarithmic) height of a number 
a e K relative to K is defined by 

(3) HK (a) = Elogmax(I aK1, 1), 
v 

where the sum is over all places v of K and the v-adic valuations are nor- 
malized as usual in such a way that the product of laIv over all Archimedean 
v is the absolute value of NK/q(a), and the product of all lalv is equal to 
1. It is an easy exercise-trivial if a is an algebraic integer-that HK (a) is 
simply the logarithm of the Mahler measure of the minimal polynomial of 
a if K = Q(a), so Lehmer's conjecture can be restated as the lower bound 
HK(a) > log ao = 0.1623576... for all nontorsion points in KX . The relati-ve 
height HK(a) depends on K, but in a very simple way: HK(a) is simply mul- 
tiplied by [K': K] if K is replaced by a larger field K'. Hence, one can define 
a height H(a) independent of K by 

H((a) = IKQ HK ((X) 

i.e., H(a) = logM(f)1/n if a is a root of the irreducible polynomial (1). For 
the absolute height, of course, Lehmer's conjecture is false (e.g., H(CV) = 
n-l log 2 -4 0 ). Remarkably, however, there is a Lehmer-type statement for the 
sum of the absolute heights of a and 1 -a, namely there is a universal positive 
lower bound 

(4) H(a) + H(l -(a) > C > 0 

for all algebraic numbers except 0, 1, and (1 ? V-3)/2 (i.e., except for the four 
cases where both a and 1 - a are either 0 or roots of unity). This beautiful 
result was discovered recently by Shouwu Zhang as a special case of results on 
the self-intersections in the sense of Arakelov theory of admissible Hermitian 
line bundles over arithmetic surfaces (Theorems 6.3 and 6.5 of [7], applied to 
the curve {(x, y): x + y = 1, xy =$ 0}). The main purpose of this note is to 
give an elementary proof of (4) and at the same time to find the best possible 
value for C. Specifically, we shall show that the sum of the heights of a and 
1 - a , if nonzero, is universally bounded by the height of the golden ratio, with 
equality in exactly eight cases: 

Theorem 1. For all algebraic numbers a t 0, 1, (1 + -3)/2, we have 

(5) H(a) + H(l -a) > I 
log I2 + 

- 0.2406059... 

with equality if and only if a or 1 - a is a primitive 10th root of unity. 

Interestingly enough, the bound 2 log 2 (1 + VS) is exactly the same as the 
minimum of H(a) over all totally real numbers a, found by Schinzel twenty 
years ago [5]. 

We will also show how the method applies to give an equally elementary-but 
in general no longer sharp-proof of most cases of the more general result of 
Zhang that H(a) + H(fl) > C(X) > 0 for all but finitely many pairs of algebraic 
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numbers (a, ,B) lying on a curve X c IR1 x IR1. (Equation (4) is the special 
case when X is the curve a + /3 = 1 .) 

2. PROOF OF THEOREM 1 

The basic idea, which we will illustrate first by proving (4) without optimizing 
C, is as follows. The absolute height of a, at least if a is an algebraic integer, is 
essentially the average of the logarithms of the absolute values of the conjugates 
of a outside the unit circle, so if this height is small, then most of the conjugates 
of a are within the disk lzl < 1 +e for some small E. Since H(a-1) = H(a), 
the same is true for a-1 if this is also integral, so most of the conjugates of a 
must lie in an annulus 1 -8E < Izl I 1?8 + . For the same reasons, if H(I - a) is 
also small, then most of conjugates must lie in the annulus 1 -8E < I 1 - zI < 1 +8E 
and hence must be near one of the intersection points (1 + A=-3)/2 of the two 
circles I z I = 1 and I1 - z I = 1 , but this is impossible since then the norm of 
a2 _ ? + 1 would be a rational integer of absolute value less than 1. To make 
this rigorous and get rid of the assumption that both a and 1 - a are units, 
we observe that there is a universal constant A > 1 such that 

(6) log la 2 _a + I IV + nv < A (I log lalv I + I log I I - alv 1) 
for all places v of K, where 

A if v is real, 
(7) nv= 2 if v is complex, 

O if v is non-Archimedean. 
This is obvious for v finite (if a is integral at v , then the right-hand side of (6) 
equals 0 and the left-hand side is < 0; if not, then I a2 - 1 V = I 1 -a 

IaI2 > 1). If v is Archimedean, then al)v = IU(a)nl,l for some embedding a 
of K into C , so the claim is that the function 

log IZ2 _ Z + 11 + 1 
Z jo~?lgz1 (z EC) 

is bounded above by some constant A > 1, which is true because the function 
in question tends to 1 as lzl - oc, is negative near the two intersection points 
of the circles zI = 1 and Iz - 1 = 1 , and is continuous elsewhere. Now 
summing (6) over all v and observing that 

, nv =[K:?] log fl,Bv =O 0 I I log A,B1 I = 2HK(,B) 

(8) ,, 
(V/3 E K) 

(the last because lxl = 2 max(O, x) - x), we obtain (4) with C = 1/(2A). 
We now give the proof of the sharp inequality (5). 

Lemma. For z E C, we have 
max(O, log I z 1) + max(O, log I 1 - z ) 

> 
v5 

-Iloglz2 -z I + 
I 

logIz2 -z?+ 1? +Ilog 
I + /5 

2,v/5 2,vl5 2 2 

with equality if and only if z or 1 - z equals e?2'l5 or e 

Proof. Let f(z) denote the difference of the right and left sides of the proposed 
inequality. Clearly, f(z) -* -oc as z tends either to infinity or to one of 
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the points 0, 1, or (1 + -3)/2, and is continuous elsewhere, so it attains 
its maximum at some finite point(s). Since f is harmonic off the two circles 
Iz 1 = I and 1 - z 1 = 1, the maximum principle tells us that the maxima 
occur only on these circles, and since the desired inequalitv is symmetric under 
z, 1-z or z ,we can assume z=ei0, 0 <0<ir. Set S=4sin20/2. 
We distinguish two cases. If 0 < 0 <K 7/3 (i.e., 0 < S < 1), then 1 - e'0 K 1 
and 

f(e'0) - log (2 sin2) ? 2 log(2 cos 0 - 1) + I log (1?2 5) 

- 
V5- 

log(S) + 2 log(1 - S) + 
I 

log 
I 

) 

and differentiating this with respect to S, we see that the unique maximum on 
the interval [0, 1 ] is attained at S = (3 - v5)/2 or 0 =ir/5, where f vanishes. 
Similarly, in the interval 7r/3 < 0 < 7r or 1 < S < 4, we have 1 - e Io 

I 1 
and hence 

10 v/ 1 (OIN 1 1 (1 ? -5 

f(e'0)= log 2sin1) ? 2 log(l - 2cos0) + log 2 9 
= V'?1 log(S) +? log(S- 1)+log I + /5 

with the unique maximum value 0 at S = (3 + v5)/2 or 0 = 3r/5. 

Proof of Theorem 1. The lemma immediately gives 

max(0, log zIV) + max(0, log -zV) 

> V5/ 
- 

- log Ilz2 - Zltv + 
I 

= log I z2 -_z + I 1, +n2' log I+ vl-5 
2 V5 2 vr5 2 2 

(with nv as in (7)) for v Archimedean, since then lalv = a.1n,, . This inequality 
is trivial when v is non-Archimedean by the same argument as before (look 
separately at the cases l < 1 and lalv > 1). Now summing over all v, using 
(8), and dividing by [K: Q], we immediately get the inequality (5). : 

3. COMPLEMENTS AND GENERALIZATIONS 

A. "Spectrum" of values of H(x) + H( 1 - x) . The proof of Theorem 1 can be 
improved to show that the real number on the right of (5) can be replaced by a 
strictly bigger one for all a except the eight values mentioned in the theorem. 
To prove (5), we showed that 

max(O, log I zIV) + max(O, log I 1 --- z I,) 
> C nv + Ci log Iz 2 - ZlV + C2 log I 2 Z+ 1IV 

where the values of C1 (= (V/5- 1)/2'/5) and C2 (= 1/2'/5) were chosen 
to maximize the value of C (= I log(1 +V5)/2). Summing this over all v 
and dividing by n gave (4). If we add a term C3 log g(z) to the right side 
of (9), where C3 iS a small positive constant and 

g(z) = q$i(z)O1 Z) z8 - 4Z7 + 8Z6 - 10Z5 + l IZ4 - 10Z3 + 7Z2 - 3z + 1 
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is the polynomial having the eight exceptional values of a as its roots, then the 
values of C, C1 , and C2 can be reoptimized and the new value of C will be 
slightly larger, since the only places where the previously optimal value of C 
was attained or nearly attained were those near the eight roots of g(z), where 
the expression C3 log Ig(z)j1 becomes very negative. This gives (4) with the 
new, larger value of C for all algebraic numbers a except for the twelve roots 
of (z2 _ Z)(z2 _Z + ?)g(z) = 0 . One could easily specify numerical values of 
the constants C, and C which work. However, it is no longer clear whether 
the equality (after summing over places) is ever attained and hence whether we 
can repeat the process by adding yet another term C4 log Ih(z)t1 to (9), where h 
vanishes at the cases of equality. The question therefore remains open whether 
there is a whole "spectrum" of values 

1 1?V' 
C= 0 <c1 = -log 1 C2< 2 og 2 

such that H(a) +H( 1-a) = c1 for some finite collection of algebraic numbers a 
and H(a) + H( 1 - a) > lim sup cj for all other a E Q. For the related problem 
of low values of H(a) for a totally real, where as already mentioned the 
minimal value is attained and is the same as for our problem, an investigation 
of the spectrum was carried out, and its first four isolated points determined, 
by C. J. Smyth [6]. 

B. Projective version of Theorem 1. The quantity H(a) studied so far is in 
fact the height of a considered as a point of the projective line 1I , so that 
Theorem 1 can be considered as a statement about the behavior of the height 
function (x, y) ~-* H(x) + H(y) of P1I x P1I restricted to the curve x + y = I 
in P1I x 1P1 . It is perhaps more natural, and certainly more symmetric, to use 
instead the height function 

Hp2 (x : Y : Z) = KQ E log max(lxl, lYIV, IZJV) 

((x:y: Z)Ep2(K), KcQ) 

of the projective plane (note that this is independent of the choice of projec- 
tive coordinates x, y, z by virtue of the product formula) and consider its 
restriction to the curve x + y + z = 0. The inequalities 

max(lxl, 1) + max(lyl, 1), max(lxI lyl, 1)> max(2xl, 
1) + 

max(lyl2 
1) 

imply that 
H(x) + H(y) > Hp2 (x : y : 1 ) > I (H(x) + H(y)) 

and hence that the minimum of Hp2 on the curve x + y + z = 0 is somewhere 
between C/2 and C, where C is the optimal constant in equation (4). We can 
find the exact minimum by the same method as that used in ?2. The analogue 
of the lemma there is the inequality 

( 10) 0logmax(lxl, lyl, lzl) > 2 logo0 604 log xy?yz?zx 

+ 30 -2 log IxyzI 
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for x, y, z E C with x+y+z = 0, where 0 = 1.46557... is the real root of 
03 - 1 = 0. (We omit the proof, which is similar to the one before.) This 
leads by the same argument as before to 

Theorem 1'. Let C c p2 be the curve x + y + z = O. Then 

(11) Hp2(P) > 1 logO = 0.1911225 ... 

for all P E C(o) except for the five points 

P = ( 1: -i : 0), ( 1: 0: -1), (0: 1: -1), (I1, -), w-2), (1 C2 w) 

(co = nontrivial cube root of unity) for which Hp2 (P) vanishes. The bound in 
(11) is sharp and is attained for exactly six values, namely at the points P = 
(I : a - 1: -a), where a is a root of the equation a 6 - 3a5 + 7a4 - 9C3 + 7C2 - 
3a?+ 1 =0. 

The six exceptional points of the theorem are the intersections of the curve 
a1 = 0 and U2 =2 on 2, where a, denotes the jth elementary symmetric 
polynomial in x, y, and z. As in A above, we can improve the result by 
adding a term to the right-hand side of (10) which tends to -oc as (x : y: z) 
approaches one of these six points, i.e., by replacing (10) by 

logmax(jx, IY tIZI) > C'+Clog I21+C2log I3 +C log I +23 -_321 (a, 0) 

for some small positive number C3 and appropriately chosen real numbers C', 
C ,and C2 with 2CI + 3C2 + 6C3 1. Numerical values which work are 

C' =0.2024850... , C =0.1801634... , C2 0.1714179... 

C3 = 0.0209032... 

(we do not describe the optimization process which produces these numbers), 
showing that the right-hand side of (11) can be replaced by the slightly larger 
real number C' for all a except for the six values mentioned in the theorem. 
Again, however, we do not know if there is a sequence of such best possible 
results leading to a "spectrum" of values of Hp2(P), P E C(Q) . 

C. Other curves. Finally, we can replace the special curve {x+y = 1 } c PlI x Pl1 
or {x + y + z = 0}c CI2 by an arbitrary curve X in PI1 x PI1 or l2 . We 
consider the case of X c lPI x IPI given by the vanishing of a polynomial 
F(x, y) with rational coefficients. We assume that the curve X* given by 
F(x-1, y-1) = 0 has no component in common with X, and pick a polynomial 
G(x, y) E Z[x, y] which vanishes at all the intersection points of X and X* 
as well as at all the intersection points of X with x = 0, y = 0. For instance, 
if X is the curve x + y = 1, then X* is the curve x + y = xy and we can take 
G(x, y) = xy(xy - 1) . Now it is clear that log IG(x, y)l' + n, is bounded by 
A (Ilog lxl, + Iloglyl,l) for all (x, y) C X(K) and all places v of K, if A is 
sufficiently large. (For v finite this is trivial because n, = 0 and IG(x, y)J, is 
bounded by a polynomial in lxl,, and jyj,,; and for v Archimedean it follows 
as before by noting that the quotient (1 +log Gj)/( log xj+j log jyj) is bounded 
above for lxl + IyI - 00 because G is a polynomial, and is negative near all 
its discontinuities because IGI is small whenever both lxl and IyI are near 
1.) Summing over all places v and dividing by [K: Q] as usual, we obtain a 
universal lower bound H(x) +H(y) > 1/(2A) for all (x, y) e X(Q) except for 
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the finitely many common roots of F and G. It is clear that the method could 
also be applied to curves in P2 and in other situations. 
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